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ABSTRACT

This paper presents a new numerical algorithm for the solution of large-order

eigenproblems typically encountered in linear elastic finite element systems.

The architecture of parallel processing is used in the algorithm to achieve

increased speed and efficiency of calculations. The algorithm is based on the

frontal technique for the solution of linear simultaneous equations and the

modified subspace eigenanalysis method for the solution of the eigenproblem.

Assembly, elimination, and back-substitution of degrees-of-freedom are per-

formed concurrently by using a number of fronts. All fronts converge to

and diverge from a predefined global front during elimination and back-

substitution, respectively. In the meantime, reduction of the stiffness and

mass matrices required by the modified subspace method can be completed during

the convergence/divergence cycle, and an estimate of the required eigenpairs

can be obtained. Successive cycles of convergence and divergence are repeated

until the desired accuracy of calculations is achieved. The advantages of

this new algorithm in parallel computer architecture are discussed.

*NASA Resident Research Associate. Work funded by NASA grant NAG3-762

(monitor: L.J. Kiraly) and performed on-site at the Lewis Research Center for

the Structural Dynamics Branch.
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GENERALIZEDEIGENPROBLEM

Newparallel algorithm for the solution of large-scale eigenproblems in
finite element applications

Assumptions

(I) Linear elastic finite element models
2

(2) n lower order eigenpairs are required, i.e., e1

(3) [K] is positive-definite

(4) [M] is semipositive definite

2 2
_<o_2 _< ... _0n

[K][_] = [M][_] [_]

N- DEGREES OF FREEDOM

REQUIRED n EIGENPAIRS, n _ N

[K] POSITIVE-DEFINITE
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PARALLELARCHITECTURE

Consider a parallel computer with (m+l) processors (tasks).

Designate the first processor as a global processor (task).

Designate the remaining m-processors as domain processors (tasks).

A finite element model can be divided into a number of domains equal to m.

A star architecture (or tree) is the first to be investigated.

FINITE ELEMENTMODEL
SUBDIVIDED INTO m DOMAINS

®

STAR ARCHITECTURE

DOMAIN

®
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MAJORCOMPUTATIONALTASKS

Three major steps of large computational requirements

(I) Creation of element stiffness and massmatrices

(2) Extraction of a set of eigenpairs

(3) Solution of a set of simultaneous linear equations

The merits of selecting the modified subspace method for step 2 and the
frontal solution for step 3 are discussed in the next viewgraphs.

[K] [_] = [M] [_] [_]

(1) CREATIONOF Ke AND M e

(2) EIGENSOLUTION(MODIFIED SUBSPACE)

(3) EQUATIONSOLVER(FRONTALSOLUTION)
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MODIFIEDSUBSPACEMETHOD

The Modified SubspaceMethod iterates simultaneously for a subset of eigenpairs
[_,_2] of the generalized eigenproblem:

(i) Let [V]I be n starting eigenvectors.

(2) Operate on each [V]_ as follows:

IV]* [K] -I [K]-I[B]£,£+I = [M][V]£ = £ = 1,2,3, . . .

(3) Modify [V]£+I to increase convergence rate by one third on average

[v]_+ I + [v]£+I - s_[v]_

where B£ = 0 for £ = i and £ > Ii

B£ = 0.5 (l+r__l)/_ _ i < £ _ ii

r__ I are the interval points of the llth order Labatoo rule [-i, i]

(4) Project K and M onto the required subspace.

(5) Solve the auxiliary eigenproblem to obtain [Q]£+I and [_]£+i o

(6) An improved set of eigenvectors [V]£+ I can be obtained.

2
(7) Test for convergence on _ . Repeat steps 2 to 6 until desired accuracy

is achieved, n

[K]_,+ 1 = _e[V]*tT I[K][V]_'+ 1

[M]_+ 1 = _e[V]*tT 1[M][V],_+ 1

AUXILIARY EIGENPROBLEM

[K]_+ l[Q]e+ 1 = [M]_+ I[Q]e+ l[KJe+ 1

IMPROVED EIGENVECTORS

=
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RATE OF CONVERGENCE

Rate of convergence of the modified subspace is 33 percent faster on aver-

age compared to the classical subspace method.

The figure shows typical behavior.

Most computations are performed on an element-by-element basis.

BASIC SUBSPACE

MODIFIED SUBSPACE

2
o_i

2
_On+l

2

2
_n+l

2
1-/_eUn+ 1
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FRONTALSOLUTION

(i) Gauss elimination technique

(2) Underlying philosophy based on processing of elements one by one

(3) Simultaneous assembly and elimination of variables

(4) The optimum frontal width at most equal to the optimum bandwidth

(5) Numbering of nodes - no impact on optimality; numbering of elements -
important to minimize the frontal width

(6) More efficient for solid elements and elements with midside nodes

(7) Requires a prefront to determine last appearance of each node

(8) Lends itself to parallel solutions

WITHIN EACH DOMAIN

kij

biq ',- biq- --
kss
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DOMAIN PROCESSING

Multitasking on the Cray supercomputer provides tools for implementing the

frontal solution concurrently within a number of domains. Assembly and elimi-

nation for the i-th domain is assigned to a task (processor). Simultaneous

assembly and elimination of variables within the domains is performed in paral-

lel tasks until the domain fronts reach their respective global fronts. How-

ever, it is instructive to analyze the set of simultaneous equations for the

i-th domain assuming that the domain stiffness matrix and right-hand sides are

fully assembled before Gauss elimination is performed.

For domain i

[K][V]£+ I = [B]£ at iteration

Elimination gives

UdV d + KdV F = Bd

KF VF = BF

where Ud upper _ matrix for domain i

Vd variables within domain i

VF variables along global front of domain i

Bd and BF are right-hand sides for domain variables and global fronts,

respectively.

r- GLOBALFRONT
/

/ FOR DOMAIN i
/

I/ \\\

//.,/

o Lv j
i-th DOMAIN

Ud V_ + Kd V; = Bd
li

KF VF " BF

1-98

CD-88-31674



m

KFF =E KF

m

BFF =E BF

GLOBAL FRONTS

where m = total numbers of domains

KFF VFF = BFF

Solution for VFF is then obtained by using the frontal solution on the global

* back-substitution for V dfronts. Since VFF is a superset of all V F ,
follows concurrently within the domains.

KFF = E KF

BFF = E;BF

WHERE m = TOTAL NUMBER OF DOMAINS

KFFVFF = BFF
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IMPLEMENTATION

Successful implementation of the new parallel algorithm depends on

(i) Maximizing the efficiency of communication links between the

task and the domains

(2) Minimizing sequential computational steps

(3) Multithreaded I/0

global

DOMAIN TASKi

DATA, Ke,MeV_e

B_=MeV,?

ASSEMBLYELIMINATION
(ELIMINATIONOF B
IN RESOLUTION)

....... .1__

0 KF :BF

J.

WAIT FOR GLOBALTASK

I
*e i

BACK-SUBSTITUTIONVk+ 1

*e j, *e eVt+l Ve+l-,SeV k

K;=fV;_lKV;+_

Md = fV;I1MV;+1

I
WAIT FOR GLOBALTASK

_r

I =VI+IQV_+I oe

GLOBALTASK

KF AND BF

VFF

I GLOBAL DATA I

WAIT FORDOMAINS

KFF- KF,

KFFVFF= BFF

m

BFF= _ BF

K_ AND M_

Q,_

CONVERGENCE

WAIT FOR I= DOMAINS

+
m m

K'= EKe, M'= EMil

K'Q = M "Q_

TEST CONVERGENCE

t

®
FALSE
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CONCLUSIONS

Parallel solution method for eigenvalue extraction for linear elastic finite

element models has been successfully implemented on the Cray supercomputer by

using the multitasking environment. Preliminary results are encouraging and

extensive testing of the new algorithm is currently progressing. The new algo-

rithm enhances the speed-up of similar sequential solution methods. Both the

frontal method for the solution of the set of simultaneous equations arising

in finite element problems and the modified subspace method for the solution

of a subset of eigenpairs offer a new algorithm which has been efficiently

parallelized. The parallel tasks are associated with recognizable finite ele-

ment domains rather than dissected blocks of abstract equations. Moreover, the

complexity of data management and data flow normally associated with parallel

solution methods is avoided in this new algorithm.
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